Posterior consistency for semi-parametric regression problems
نویسندگان
چکیده
منابع مشابه
Posterior Consistency for some Semi-parametric Problems
The Bayesian approach to analyzing semi-parametric models are gaining popularity in practice. For the Cox proportional hazard model, it has been shown recently that the posterior is consistent and leads to asymptotically accurate confidence intervals under a Lévy process prior on the cumulative hazard rate. The explicit expression of the posterior distribution together with independent incremen...
متن کاملSemi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses
Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...
متن کاملPosterior Consistency in Nonparametric Regression Problems under Gaussian Process Priors
Posterior consistency can be thought of as a theoretical justification of the Bayesian method. One of the most popular approaches to nonparametric Bayesian regression is to put a nonparametric prior distribution on the unknown regression function using Gaussian processes. In this paper, we study posterior consistency in nonparametric regression problems using Gaussian process priors. We use an ...
متن کاملConsistency for the Least Squares Estimator in Non-parametric Regression
We shall study the general regression model Y = g 0 (X) + ", where X and " are independent. The available information about g 0 can be expressed by g 0 2 G for some class G. As an estimator of g 0 we choose the least squares estimator. We shall give necessary and suucient conditions for consistency of this estimator in terms of (basically) geometric properties of G. Our main tool will be the th...
متن کاملSmoothing Spline Semi-parametric Nonlinear Regression Models
We consider the problem of modeling the mean function in regression. Often there is enough knowledge to model some components of the mean function parametrically. But for other vague and/or nuisance components, it is often desirable to leave them unspecified and to be modeled nonparametrically. In this article, we propose a general class of smoothing spline semi-parametric nonlinear regression ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bernoulli
سال: 2003
ISSN: 1350-7265
DOI: 10.3150/bj/1068128979